- Chemical Resistance
- Safety Data Sheets (SDS)
- Material Properties
- PRO Systems
- PE Pressure Pipe
- PE Pipe Selection
- MAOP for PE Pipes
- Temperature Influences
- E-Modulus
- Selection of Wall Thickness for Special Applications
- Hydraulic Design for PE Pipes
- Surge and Fatigue
- Celerity
- Slurry Flow
- Pneumatic Flow
- Expansion and Contraction
- External Pressure Resistance
- Allowable Bending Radius
- Thrust Block Support
- Conductivity, Vibration and Heat Sources
- Polyethylene Jointing
- Handling and Storage
- Trench Preparation for Buried Pipes
- Relining and Sliplining
- Pipeline Detection
- Above Ground Installation
- Accommodation of Thermal Movement by Deflection Legs
- Service Connections for PE Pipes
- Concrete Encasement
- Fire Rating
- Testing and Commissioning
- PVC Pressure Pipe
- PVC Pressure Pipe Standards
- Pressure Considerations
- PVC Temperature Considerations
- Mine Subsidence
- Buckling
- Water Hammer
- Thrust Support
- Air and Scour Valves
- Soil and Traffic Loads
- Bending Loads
- PVC Pipe Jointing
- Jointing Components with Ductile Iron Flanged Joints
- Service Connections for PVC Pipe
- PVC Pipe Handling and Storage
- Below Ground Installation
- Above Ground Installation for PVC Pipe
- Testing and Commissioning for PVC Pressure Pipe
- Detecting Buried Pipes
- FLUFF – Friction Loss in Uniform Fluid Flow
- Technical Notes



Concrete Encasement
Where damage to the pipe could occur as a result of movement of the pipe relative to its surroundings, the pipe should be protected by a compressible membrane such as PE, PVC, petrolatum tape or felt.
Where expansion joints are provided in the concrete slab, expansion joints should be provided at the same point in the pipeline. At these points a flexible membrane should be provided to prevent shear stresses developing across the joint.
PE pipes behave as flexible structures when externally loaded, and care needs to be exercised by the designer when using concrete encasement so that the effective strength of the pipeline is not reduced.